- Finn ut konfidens, feks 95%=1.96
- Finn ut forkastningsområdet for konfidensen, feks 1.96=0,025(?) på hver side av fordelingen.
- Regn ut T-verdi (kritisk verdi)
- Hvis T-verdi er innenfor fordelingen, utenfor forkastningsområdet, så beholdes H0. H1 er altså gal.
Hvis T-verdi er i forkastningsområdet så forkastes H0 og H1 er sann.
- Bruker t-test for to uavhengige utvalg (’to-utvalgs t-test’).
Utvalgene må være uavhengige og tilfeldige, fra normalfordelte populasjoner (viser seg rimelig for vekt). - T-fordeling =En litt mer flattrykt fordeling sammenlignet med z-fordeling.
- En symmetrisk statistisk sannsynlighetsfordeling som har nært slektskap med normalfordelingen, men er litt flatere i små utvalg. I store utvalg er den identisk med normalfordelingen.
- Kritisk verdi, ta må slås opp i tabell, med frihetsgrader og konfidensintervall. Jo flere frihetsgrader (jo større utvalgspopulasjon), desto høyere verdi.
- E, feilmargin = t alfa/2 * standardavvik/rot(populasjon). Halve feilmarginen skal være på hver side.
- Frihetsgrader, df, degrees of freedom: n-1
Eksempel, t-test
Snitt-x, (punktestimat+feilmargin E) | 22,3 | 2,33 | 1 237 | -7,12 |
S, standardavvik | 4,5 | 0,6 | 200 | 2,16 |
Frihetsgrader (n-1) | 19 | 59 | 1 599 | 159 |
Konfidensintervall | 0,95 | 0,95 | 0,9 | 0,9 |
Venstrehalesannsynlighet | 0,975 | 0,975 | 0,95 | 0,95 |
Konfidensintervall (df 19) | 2,09 | 2,00 | 1,65 | 1,65 |
Mellomregning: rot(60) | 4,47 | 7,75 | 40,00 | 12,65 |
Standard error mean =E3/E9 (Stdavvik/rot(n)) | 1,006 | 0,077 | 5 | 0,171 |
Variasjon =E7*E10 (konf*std err mn) | 2,106 | 0,155 | 8,22905 | 0,283 |
Minimum =B2-B7 | 20,19 | 2,18 | 1 228,77 | -7,40 |
Maksimum =B2+B7 | 24,41 | 2,48 | 1 245,23 | -6,84 |
Undertemaer:
Relatert label A:
Filter by label
There are no items with the selected labels at this time.
Relatert label B:
Filter by label
There are no items with the selected labels at this time.
0 Comments